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The interaction of fluid structures with bodies in the flow field is an important and topical research
area, and recently a new phenomena has been proposed involving the metastable capture of vortex struc-
tures by bluff bodies. The fundamental mechanism for this capture phenomenon is the generation of
chaos in the perturbed Hamiltonian point-vortex model for the system, and a variety of numerical results
have been quoted in this framework. In this paper, we present the results of a study of the capture
phenomenon in a more realistic context, i.e., by a numerical solution of the Navier-Stokes equations for
the system. A mixed spectral-finite-difference numerical scheme is used to study the interactions of ex-
tended vorticity profiles with a bluff body and comparisons are made to the previous point-vortex results.
In general, we find that the capture phenomenon exists generically in the extended system and that many
of the physical characteristics of the phase-space topology of the Hamiltonian system persist, even for
relatively large vortex diameters. For even larger profiles, we find that the internal degrees of freedom of
the vortex structure are sufficient to generate a trapping phenomena without an explicit perturbation and
that several additional types of dynamical behavior occur. We comment on the general mechanisms for
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these phenomena and make connections with possible applications to physical systems.

PACS number(s): 05.45.+b, 47.32.Cc, 47.52.+j, 83.50.Ws

I. INTRODUCTION

The dynamics of the interaction of fluid flows with
physical bodies represents a complex and important
research area in fluid dynamics, with applications to tur-
bulence theory, hydrodynamics, aerodynamics, and at-
mospherics among others. In three-dimensional flows,
the large computational effort required to solve the
Navier-Stokes equation has motivated the search for
asymptotic or reduced descriptions of such flows [1-3].
The study of such interactions in corresponding two-
dimensional (2D) flows has received much attention re-
cently, encouraged by the use of numerical calculations
which can within certain limits handle many problems by
direct Navier-Stokes integration.

In recent years a new mechanism termed ‘“chaotic
scattering,” which arises generically from the existence of
chaotic behavior in unbounded systems [4,5], has also
been considered for the interaction of vortex structures
incident upon bluff bodies embedded in the fluid flow. A
similar mechanism has recently been shown analytically
to exist in simple models of the interactions of vortices
with bluff bodies, and the related dynamical phenomenon
consists of a chaotic interaction of the vortices with the
body [5]. The physical significance of the chaotic
behavior of an impinging vortex in the vicinity of the
body is that it can result in metastable “capturing” of the
vortex around the body, which is extremely sensitive to
initial conditions and which produces very rich dynam-
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ics. Numerical simulations indicate that during a chaotic
capture event, the vortex can spend unusually long
periods of time interacting with the body, and resultant
pressure variations on the body have been demonstrated
to become nearly three orders of magnitude larger than
would be expected in the absence of chaos [5]. Such a
mechanism may therefore have significant implications
for such physical systems as aircraft wings, water craft,
piers, and cables among others.

To date, previous investigations of the chaotic trapping
mechanism have all utilized an inviscid, point-vortex La-
grangian framework for the analysis and simulations. In
this paper, we present simulations of the mechanism
based on a semispectral implementation of the viscous
Navier-Stokes equations for the idealized system present-
ed in Ref. [6]. The principal aim of the present study is
to generalize the model and observe the differences in the
time evolution of an extended vortex system. In order to
draw comparisons to the previous work, the influence of
viscosity is made minimal by enforcing a free-slip bound-
ary condition on the body surface and by setting the Rey-
nolds number at 1000; dissipative phenomena still con-
tained in the evolution of the flow, unavoidable in such a
simulation, are then discussed. Further studies utilizing
the full viscous dynamics for extended systems, which in-
cludes no-slip boundary conditions and the resulting
boundary layer vortex shedding, are in progress [7].
These studies present additional complexities by combin-
ing the trapping behavior presented here with the in-
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teraction of the principal vortex structure and the shed
vorticity. Although the present work corresponds rough-
ly to an ideal hydrodynamics, such simulations utilizing
the Navier-Stokes (NS) framework are considerably more
physically credible than the point-vortex approaches.
They may therefore provide a critical link between simple
numerical simulations and observation of the phenomena
in real physical systems, and represent a second approxi-
mation to real fluid systems. Furthermore, they also pro-
vide a quantitative measure to gauge the utility of the
idealized point-vortex calculations, and here we have
found some striking comparisons.

The principal aim of this paper is therefore to demon-
strate the existence of the chaotic trapping mechanism in
an extended fluid system, and to make connection with
some of the previous analyses which utilized reduced
point-vortex approaches. We present and discuss exam-
ples of chaotic capture events in the NS simulation,
which are very similar to those observed in the previous
simulations. We also investigate more extended vorticity
distributions for which the point-vortex models are not
applicable, and demonstrate behavior such as partial cap-
ture of a fraction of the original vorticity distribution.
Section II of this paper reviews the generic system being
studied along with previous results on the chaotic capture
mechanism. Section III describes the implementation of
the Navier-Stokes framework, and relevant numerical is-
sues. Section IV describes numerical results for the simu-
lations, and Sec. V gives conclusions and future direc-
tions.

II. BACKGROUND

To review the original two-dimensional Lagrangian
description of the problem, we recall the formulation for
the simplest case of a point vortex in a uniform back-
ground potential flow incident on a bluff body, in this
case a circular boundary. Figure 1 shows a schematic of
the physical system defining the problem. The 2D point-
vortex formulation yields a Hamiltonian system with one
degree of freedom for the single vortex case, which is an

-
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FIG. 1. Schematic of the physical system, showing lines of
constant flow, the circular body, the incident vortex, and the
perturbation direction.
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integrable system if the background flow is time indepen-
dent [5]. The problem is made dimensionless by using the
cylinder radius as the unit of length, and the uniform flow
velocity as the unit velocity scale. Representative fluid
flow contours can be traced out using the equienergy lines
of the Hamiltonian, given by

H=—(sin0/r)r*—1)+(c /2)In(r>*—1) , (1)

where we use a polar coordinate system (7,0), and all
variables have been rescaled to yield a single nondimen-
sional parameter o (equal to dimensionless vortex circu-
lation divided by 2#). In general, variation of o changes
the topology of the flow field [S5]. The fluid flow contours
for a representative value 0 =—2.96296. . . are shown in
Fig. 2.

The flow geometry in Fig. 2 contains a single hyperbol-
ic fixed point (i.e., stagnation point) in the flow field with
a corresponding separatrix which extends to infinity in
the plus/minus x-directions. More complex systems can
also be defined if one adds a constant circulation about
the body (not discussed in this paper), and such generali-
zations have the effect of adding additional elliptic and
hyperbolic fixed points. The positions of the fixed points
and the geometry of the connections of their separatrices
define the topology of the unperturbed flow field, in the
sense of determining which regions of the flow can “com-
municate.” Nearly a dozen distinct flow topologies have
been identified for the Hamiltonian system to date.

Chaotic behavior can be generated in the above system
in a simple way by the introduction of a perturbation,
and in the original formulation this was chosen to be a
sinusoidal oscillation of the body in the direction of the
flow field. Using the Melnikov integral technique, one
can show analytically that such a perturbation generates
a homoclinic tangle around the hyperbolic points of the
flow field, and hence generates chaotic motion of the vor-

FIG. 2. Iso-Hamiltonian curves (contours of H from — 10 to
+1 by 0.25) for a point vortex of intensity o= —2.96296. . .,
constant flow, in the presence of a cylindrical body.
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tex which is confined to a stochastic layer around the
separatrices. Dynamically, these stochastic layers allow
the exchange of phase-space volume across the separa-
trices and hence allow otherwise separated regions of the
flow to communicate [8]. In terms of the fluid vortex
motion, this means that it is possible for a vortex ap-
proaching the body to be swept across a separatrix,
evolve for some period of time around the body, and
eventually escape. Interestingly, in the more complex to-
pologies that arise when one has additional circulation
about the body, it is also possible for the vortex to be cap-
tured around elliptic points at some distance from the
body, and to evolve in chaotic trajectories without actual-
ly circling the body.

The existence of this mechanism implies that for a sys-
tem for which an incident vortex would otherwise be ex-
pected to be simply swept past a body with minimal in-
teraction time, the vortex can now be trapped metastably
with potentially far longer interaction times, as well as
much closer interaction distances with resultant higher
pressure fluctuations. A variety of numerical results have
been previously shown which indicate that the resulting
vortex dynamics can be quite rich and in some cases
somewhat counterintuitive. It is interesting to note that
the above system may be of purely mathematical interest
as an example of an extremely simple dynamical system
that exhibits relevant chaotic behavior, in a way which
still has a direct physical analog. A critical element of
the system is the addition of the perturbation mechanism,
and the original choice of a sinusoidal oscillation along
the flow direction is not aphysical, as this type of motion
is often induced naturally. We note that alternate forms
of perturbation which may yield chaotic trapping events
are also possible, for example, inclusion of internal de-
grees of freedom for the vortex itself. This occurs be-
cause the only conserved quantity in these systems is en-
ergy, and hence the addition of other degrees of freedom
leads generically to nonintegrability of the system. Pre-
liminary results indicate that modeling of the vortex by a
simple bound pair of like-magnitude point vortices pro-
duces chaotic trapping events without the necessity of ex-
plicit perturbation of the background flow [9].

Although the Hamiltonian point-vortex framework for
this system is quite useful for obtaining analytic results
and as a first-order model, the connect of its dynamics
with that of an extended, real physical flow may be some-
what tenuous. This is partly because it is not immediate-
ly obvious how closely the flow field of a vortex patch
system strongly interacting with a body will correspond
to the phase plane of an idealized point-vortex system,
i.e., it is not clear what happens to the fixed points and
separatrices of the idealized model in a more realistic
context. A more credible approach to the investigation
of the chaotic trapping phenomenon is that of the
Navier-Stokes formulation of the system. Consequently,
we have performed an investigation of the properties of
this system by formulating a numerical scheme for the
solution of the vorticity transport using the Navier-
Stokes equations. This numerical framework was used to
evolve the dynamics of an extended, coherent profile of
vorticity for similar system parameters as the Hamiltoni-

an system, to determine if the qualitative features of the
dynamics persist. In this extended vorticity formulation,
it is more difficult to draw analogy to the fixed points and
separatrices of the Hamiltonian formulation, as we expect
extended stagnation ‘“‘regions” and a ‘“‘separatrix” which
is similarly extended in space. In fact, the actual phase
space of this system is technically infinite dimensional
whereas the phase space of the point-vortex systems is
two dimensional. In addition, we expect viscosity to play
an important role, with the dissipation generally decreas-
ing the amount of time a vortex may be expected to in-
teract with the body due to alterations of the vorticity
profile. This important point will be discussed in detail
later.

Another interesting aspect of the extended system is to
determine the relative sizes of the vorticity distributions
for which the dynamics become qualitatively different
from the point-vortex results, and to investigate the
differences in dynamical behavior. Although we have
identified several previously unreported features of the
dynamics for large vorticity profiles, we generally find
that much of the qualitative behavior of the point-vortex
simulations persist even for relatively large vorticity dis-
tributions.

III. NAVIER-STOKES NUMERICAL SIMULATIONS

To investigate the dynamics of the chaotic vortex-body
interactions of an extended vortex structure, we conduct-
ed simulations of the system based on direct numerical
solution of the two-dimensional Navier-Stokes equations
using a mixed spectral—-finite-difference method. For this
formulation, the equations of motion are written in the
vorticity-stream function (w,¥) form. Using cylindrical
coordinates (7,6), the velocity field is given by

=(1/mn3% —_ 9%
Vv, (l/r)ae and ¥V, ar

for the radial and tangential velocities, respectively. The
dimensionless equations can be written as

o Y 0w _ 3¢ Ow 2
L= £ S re 2
ar - VM 1%, 30 a0 ar | TRV, @
0=—V4, (3)
where the operator
2 9 |,9 2y 8
v (l/r)ar "S> -i-(l/r)af)2

and the Reynolds number Re=UyR /v, with v being the
kinematic viscosity.

Dynamically the most interesting behavior, i.e., requir-
ing the greatest resolution, occurs close to the body, and
hence we introduce a stretched coordinate in the radial
direction. This stretching permits us to maintain the re-
quired resolution close to the body while extending the
computational domain to a sufficiently large distance
from the cylinder needed to approximate a physically un-
bounded flow. Both of these requirements are met using
a reasonable number of grid cells; in our simulations, we
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employed a 128 by 128 grid. A new radial coordinate 7 is
defined such that

n=In[(r —1+a)/a], or r(n)=ae’+1—a ,

where a is the stretching parameter. Using this

definition, Egs. (2) and (3) then become

2
V2=(1/ae"?2— +[(1/rae">—<1/ae")2]—a
2
an a7

2, 0
+(1/r*)—
36>
and r =r (7). To the dynamical equations, we must add

boundary conditions at the body surface and at the exte-
rior “cutoff” surface of the computational domain. The
cylinder surface boundary conditions should approximate
the free-slip boundary conditions commonly used in
inviscid simulations, and the exterior boundary condi-

do _ n | 9¢ dw _ 3¢ dw 2 tions should be chosen to approximate as closely as possi-
ot (1/rae?) dy 00 96 a7 ’-Hl/Re)V @ @ ble an unbounded flow. We will discuss both sets of
boundary conditions in detail after describing our time-
evolution scheme.
and The external flow at infinity is given by U(z)
=1+e€sin(Qt +¢), and the irrotational solution corre-
sponding to it is Y,=—U(¢)(r —1/r)sinf. We subtract
0=—V% (5)  this known contribution to the stream function and con-
’ sider the correction to it, 1y =1 — 1, as the unknown (note
that V2,=0 and w,=0). Using this variable, Eqgs. (4)
where and (5) are then given by
|
99 _ (1 /raeny |82 _ 3V B0 |\ (17 /om) | —aeM(141/r2)5in0°2 +(r —1/r)c0s022 | +(1/Re) V20 (6)
ot o 36 90 97 ] an
and
0=—V% . ™

Since all the quantities are periodic in the 8 direction, we introduce a spectral representation in 8 expressing all quan-

tities as Fourier series:

o(t,7,0)=3 w,(t,ne™®, §(t,1,0)=3 ¢,(t,ne™’,

where —0 <n<w andi=V —1.

(8)

By substituting representation (8) in Egs. (6) and (7), we get the set of equations to be solved numerically:

da, 3P 30 3P dw
—— 1] ——— — ———
o /ree) 1550 T 36 an
with
0,=—V*, and —wo<n<ow . (10)

To Egs. (9) and (10) we must add the boundary condi-
tions of the vorticity and stream function at infinity and
on the body surface. At infinity, or more correctly on the
outer boundary of our computational domain, we impose
the condition that the flow is irrotational, and the veloci-
ty is given by the irrotational solution

Y,

7—»0 and w,—0 when p— o0 . (11

+(r—1/r)

+(U /2rae™) [—ae”(1+1/r2)[(n — Do, _;—(n+Dao, 4]

W, —1 aa)n+1

an an

l+( 1/Re)V%0 9)

[

On the body surface we must impose the condition that
the wall is a streamline, or rather dy/360=0. Using the
spectral representation we have

¥, =0 when =0 . (12)

The Navier-Stokes equations are a second-order system
of partial differential equations and require a second
boundary condition on the body surface. In general, this
is usually chosen as the “no-slip” condition, but here we
seek to apply an inviscid condition. Physically, we re-
gard the boundary layer thickness as smaller than the
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grid spacing. This condition may be heuristically simu-
lated by using a slip condition and evaluating the stream
function from (12) and the vorticity from a Neumann
condition

dw,,

ar =0 at n=0. (13)
This condition is typically imposed in inviscid flow simu-
lations. The validity of this approach is as yet theoreti-
cally unproven for viscous flows, however, it has been
widely used in the literature and shown to give meaning-
ful results [10,11].

In the numerical implementation, a finite number of
spectral modes is chosen and the radial direction 7 is
discretized by considering a finite number of grid points
between the body surface and a large but finite distance
corresponding to a maximum radius. Equations (9) and
(10), and the conditions (11) and (13) are discretized in
the radial direction 1 by second-order finite differencing.
The nonlinear terms in Eq. (9) are calculated by direct
convolution in Fourier space (full spectral). Time evolu-
tion is accomplished by using a second-order Adams-
Bashforth scheme. In the results presented below, when
not otherwise specified, we used a maximum radius equal
to 80 (see Ref. [12] and references therein for a discussion
of how to choose a “cutoff”’ distance for this exterior
domain radius). Also, we used 128 grid points, a stretch-
ing parameter a =0.05, 64 modes in the tangential direc-
tion, and a time step of 0.0005. We have empirically
found these parameters to be optimal with respect to
computational efficiency and numerical stability of our
solutions.

IV. NUMERICAL RESULTS

Our general approach to searching for extended cap-
ture events was to replace the idealized point-vortex posi-
tions of the original systems with a vortex patch which
was of appreciable extent on the scale of the physical sys-
tem, and yet still small enough so that we may expect the
main qualitative features of the previous work to persist.
Problems of numerically resolving sharp vorticity gra-
dients suggest that we define the vortex patch by impos-
ing a smooth vorticity profile. A Gaussian distribution,
which asymptotically can be made to yield the point-
vortex Dirac distribution, is an obvious choice. There-
fore, the initial vorticity distribution is assumed to have a
two-dimensional, radially symmetric Gaussian shape,
centered on (x,y,) and of typical half-width of one stan-
dard deviation S, i.e.,

w=(0/S%)exp{ —[(x —x¢)*+(y —y,)*1/28?} . (14)

Now consider a concentrated vortex, i.e., S small with
respect to cylinder radius. When the uniform flow is un-
perturbed (e=0) the evolution of the vortex patch is very
similar to what is obtained with the point-vortex model.
Generally, in this uniform-flow regime, only small
differences are observed compared to the original point-
vortex model, and these are due to the finite size of the
vortex distribution, as well as in part to the finiteness of
the integration domain (in the point-vortex model the
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boundary condition is analytically imposed at infinity).
In Fig. 3 we show two trajectories of the extended vortex
patch whose o parameter is equal to that used in the
point-vortex case reported in Fig. 2 of Ref. [6], i.e.,
0=—2.96296. ... The parameters for the extended vor-
tex simulations are S =0.25 and an initial condition of
x0=2.0,y9=—4.0, and x(,=2.0,y,= —4.2, respectively.
Each contour snap shot corresponds to 0.5 time units,
and each contour level corresponds to a relative vorticity
level chosen to be 55% of maximum vorticity at the same
instant. These trajectories are computed by full Navier-
Stokes integration as described in the previous section,
with a corresponding Reynolds number Re equal to 1000.
If compared with the original point-vortex trajectories
presented in Fig. 2 of Ref. [6], they correspond to trajec-
tories above and below the original separatrix, even
though in the extended case these trajectories correspond
in actuality to a projection into two dimensions of the ex-
tended system’s high-dimensional phase space, and such
a separatrix is no longer a well-defined object. The
influence of dissipation, in the absence of vortex shed-
ding, is limited to a slow spreading of the vorticity distri-
bution, as can be observed from the plot. Dissipation
makes the system irreversible, and destroys the symmetry
with respect to the x =0 plane which was present in the
ideal point-vortex calculation. We emphasize that al-
though the value S =0.25 already yields a patch of
significant size measured on the scale of the body, we still
observe the persistence of the phase-space structure of
the point-vortex system.

In Ref. [6] it was shown that an oscillation of the exter-
nal flow (i.e., of the body) can induce a chaotic capture of
the vortex, which must also result in detrapping in some

FIG. 3. Evolutions of two separate Gaussian extended vor-
tices of intensity o =—2.96296. . ., and size S =0.25 in a con-
stant flow, in presence of a cylindrical body. Initial position of
vortex centers are Xx,=2,y,=—4 (above the body) and
X0=2,y0= —4.2. A vorticity contour (at 55% of instantaneous
maximum vorticity value) is drawn every 0.5 time units.
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finite time interval. Physically, oscillation implies a sto-
chastization of the trajectories around the hyperbolic
point and hence the vortex can, for particular initial con-
ditions and oscillation frequencies, cross a separatrix and
evolve around the body. In the extended dissipative sys-
tem presented here the number of revolutions that we ex-
pect to be possible for the vortex is reduced because the
viscous diffusion of vorticity implies a continuing in-
crease in the distance of the vortex from the body, due to
a shifting of the homoclinic loop toward the cylinder.
Additionally, the finiteness of the extended vortex
prevents it from passing very close to the body without
strong distortion, as was observed in the point-vortex
model, and hence identical trajectories cannot be fol-
lowed for particular events. Although these dynamical
mechanisms are fundamentally different than the inviscid
dynamics of the original model, we nevertheless intuitive-
ly expect that capture phenomena still exist, based on the
observed robustness of the phase-space topology of the
original system in the extended framework.

In Figs. 4 and 5, we present two capture events for the
extended system. In both cases the vortex system has the
same parameter o as in the previous calculations, the
same Re=1000 and the same width § =0.25, and com-
putations start with the vortex at x;,=2.0,y,=—4.0.
The figures plot vortex trajectories at several instants 0.5
time units apart by plotting at each instant a contour of
the vorticity level (equal 55% of maximum vorticity at
the same instant). The perturbed external flow is given
by U(t)=1-+e€sin(Qt +¢). In the evolution presented in
Fig. 4, the perturbation amplitude is €=0.2, with fre-
quency =0.5 and phase ¢=1.3. The vortex is shown
arriving from ‘“‘upstream” of the body, where it then is

FIG. 4. Evolution of a Gaussian extended vortex of intensity
o=—2.962962. .., and size $=0.25 in a perturbed stream
flow, in presence of a cylindrical body. Initial position of vortex
center is xo=2,y,= —4. A vorticity contour (at 55% of instan-
taneous maximum vorticity value) is drawn every 0.5 time units.
Perturbation is given by U (¢)=0.2sin(0.5¢ +1.3).
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FIG. 5. Evolution of a Gaussian extended vortex of intensity
o=—2.962962. .., and size S =0.25 in a perturbed stream
flow, in the presence of a cylindrical body. Initial position of
vortex center is xo=2,y,=—4. A vorticity contour (at 55% of
instantaneous maximum vorticity value) every 0.5 time units.
Perturbation is given by U (¢)=0.2sin(1.0¢ +1.8).

captured and makes nearly two complete loops around
the body before escaping. For the evolution presented in
Fig. 5, the corresponding system parameters are
€=0.2,0=1.0,6=1.8. In this case, the vortex arrives
from upstream and then slows critically for some time in
the region where the hyperbolic point of the point-vortex
system was located. The vortex then leaves the vicinity
of the hyperbolic point and is captured for nearly three
complete revolutions around the body before escaping.
Due to the computational intensiveness of the numerical
scheme, the parameters for the capture events could not
be found by trial and error as for the point-vortex case,
but were determined by searching in the neighborhood of
parameters which yielded large chaotic regions in the
point-vortex models. The existence of these capture
events show the extreme sensitivity to initial conditions,
as well as the system parameters ¢ and the perturbation
frequency (2, that is to be expected of a chaotic dynami-
cal phenomena. It is observed that small changes in one
of these parameters can make the vortex pass above or
below the body without being captured, or can dramati-
cally change the capture dynamics, and hence the generic
global dynamical characteristics of the point-vortex mod-
el are preserved.

These results indicate that the point-vortex model at
least qualitatively captures much of the fundamental
dynamical behavior of the extended system, when the ex-
tended vorticity distribution is relatively concentrated.
For more extended vorticity distributions, we expect to
see increasing discrepancies with the point-vortex model
results. In the point vortex case a length scale induced by
the perturbation amplitude exists, which is related to sto-
chastization of the homoclinic loop, i.e., related to the
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separatrix oscillation amplitude. In the extended simula-
tions, the finite S and the resultant “internal” dynamics
of the vortex patch imposes a new length scale not
present in the point-vortex model, which can in theory
induce stochastization of the system by itself, even in the
absence of flow oscillation. More specifically, in analogy
to the point-vortex model this length scale can be associ-
ated with a perturbation to the integrable dynamics of
the center of vorticity of a cluster of n-point vortices. In
this model the patch is replaced by this set of bound vor-
tices whose relative dynamics represents the internal de-
grees of freedom of the patch [7]. We expect that the
internal degrees of freedom in the extended system itself
may induce sufficient perturbation to the center of vorti-
city dynamics to create chaotic trapping of the vortex.
Additionally, we have observed that in the absence of
external perturbation, a significantly extended vortex
straddling the “separatrix” can divide into two parts be-
cause of the divergence of the streamlines approaching
the original hyperbolic point. This phenomenon should
in principle be present for any nonzero value of S, howev-
er, we have presently only observed it occurring for
values of S greater than about 0.5, whereas for smaller S
it has been observed that the vortex prefers to stagnate in
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the “hyperbolic region” before moving either above or
below the cylinder. We note, however, that the rather
large computational requirements of our simulations
have restricted the size of the parameter space that we
have been able to explore so far. To date, it is not yet
clear at which internal length-scale threshold that bifur-
cation from point particlelike dynamics to full spatiotem-
poral complexity occurs, although further investigations
are in progress with models of intermediate complexity.
To illustrate the dynamics representative of a large
spatially extended system, we present in Fig. 6 the evolu-
tion of a vortex distribution with the same o and Re as
before, however, now with S =0.75 and initial condition
x0=3.0,y9=—4.0. The system consists of a uniform
flow with no explicit perturbation. A completely
different dynamics can be observed, where the internal
dynamics of the spatial vorticity distribution plays a ma-
jor role. Here, we see an interaction where the vortex is
captured around the body initially, but where part of the
vortex then escapes and part remains captured (at least
for the time period of the simulation). In this case, too,
we observe a sensitivity to initial condition of the system,
with small changes in parameters resulting in the vortex
passing either above or below the body, modifying the

FIG. 6. Evolution of a Gaussian extended
vortex of intensity o= —2.962962..., and
size $=0.75 in a perturbed stream flow, in
presence of a cylindrical body. Initial position
of vortex center is x,=3,y,=—4. Vorticity
contours (at levels from —6 to —1.8 by 0.2)
are plotted for six different instants.
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subsequent dynamics. This behavior is obviously
significantly more complicated than can be observed in a
point-vortex model, and implies possibilities for the
classes of dynamical interactions that may occur in a real
physical system. Currently, work is in progress to under-
stand these more complicated systems and, in particular,
the topological changes occurring in what originally was
the point-vortex separatrices and hyperbolic points, and
how to interpret their relevance to the extended system
dynamics.

As discussed previously, dissipation in the extended
system plays an important part in altering the dynamics
of the vortex trajectories. In order to observe the global
dissipation of the system, we show in Fig. 7 the time evo-
lution of the enstrophy E, equal to the integral of the
square of vorticity over the whole space,

E={ [oldxdy, —0o<xy<w, (15)

normalized by its initial value, for the five simulations
presented above. The two unperturbed evolutions
(dashed lines) and the two capture evolutions (continuous
lines) simply show a constant dissipation, with a roughly
linear decay of enstrophy. This corresponds to the slow
spreading of the vorticity distribution, with small
changes due to different vortex distortions. For the
chaotic capture events, however, we see significant de-
creases in the enstrophy as the vortex interacts with the
body. This decrease is caused by stretching induced in
the vortex as it passes over the cylinder, which in turn
leads to a noticeable diffusion of vorticity allowing
viscous effects to become much more significant. In the
large-blob evolution (dotted line with circles) entropy de-
cay is initially slower because of the smoother vorticity
distribution (smaller initial absolute enstrophy), then for
10 <t <15 (during stretching and subsequent splitting of
the blob in Fig. 6) the dissipation is locally intense, and
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FIG. 7. Time evolution of the enstrophy (normalized by its
value at ¢ =0) for the five different evolutions of the extended
vortices of the previous plots. Unperturbed evolutions (dashed
lines), capture events (continuous lines), and large vortex (dotted
line with circles).
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dominates the vortex splitting-merging phenomena other-
wise impossible in inviscid flow. Figures 4, 5, and 7 seem
to therefore indicate that dissipation plays a relatively
minor role in the dynamics of the simulation, except dur-
ing a chaotic capture event. Even then, the primary
effect of the dissipation may be to reduce the time period
of a given capture event, but not to eliminate the ex-
istence of capture events per se. Such a conclusion would
thus seem to strongly favor the idea that chaotic capture
events should be observable in high Reynolds number
real physical flows.

An important and striking characteristic of the chaotic
capture events in the point vortex framework was the
large pressure variations on the boundary of the body
typically induced during a capture event [6]. In the
present simulation we calculate instead the force acting
on the body due to the vortex. This is an important
quantity in applications to, e.g., wing surfaces, where
aerodynamic loading can be critical. We note that the to-
tal force on the body includes the contributions due to
the oscillatory perturbation, viscosity, etc., which have
no relation to the vortex motion, so we consider only the
dynamical action of the vortex. We calculate this effect
via momentum-balance arguments [13,14] that in this
case reduces to

dl
F:_
dt’

where F is the total force acting on the body, and I is the
impulse given by

I=ffudxdy , —o3x,y< o,

(16)

1
—Efx/\a)dxdy, (17)

where A denotes exterior product and u denotes the ve-
locity.

In Figs. 8 and 9 we show the time evolution of the lon-
gitudinal and transversal force acting on the body, F,

0 5 10 15 20 2 30
time

FIG. 8. Time evolution of the longitudinal force, for the five

different evolutions of the extended vortices in the previous

plots. Unperturbed evolutions (dashed lines), capture events
(continuous lines), and large vortex (dotted line).
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FIG. 9. Time evolution of the transversal force, for the five
different evolutions of the extended vortices in the previous
plots. Unperturbed evolutions (dashed lines), capture events
(continuous lines), and large vortex (dotted line).

and F), respectively, for the unperturbed evolutions of
Fig. 3 (dashed lines), the perturbed evolutions of Figs. 4
and 5 (continuous lines), and the large vortex evolution of
Fig. 6 (dotted line). We can observe that the force is
small until the vortex passes very close to the body sur-
face, when the force on the wall abruptly increases. The
body force then changes sign in a small time interval.

unperturbed 2
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Such a phenomenon occurs several times consecutively
when the vortex is captured.

In Fig. 10 we show a polar plot in the F,-F, plane of
the evolution of the force, for the four simulations with
relatively concentrated vorticity. In this representation
we can see explicitly the magnitude and the direction of
the force acting on the body due to the vortex. All the
trajectories start and end close to zero, as they would if
the trajectories extend toward =+ infinity [slight inaccura-
cies are due to numerical derivatives occurring in Eq.
(16)]. In the first unperturbed evolution, the vortex
passes below the body far enough away so that the result-
ing dynamical action is very small. In the second unper-
turbed run (see Fig. 3) the vortex passes close to the body
surface and produces intense dynamical action. When
the vortex is captured the dynamical action does not
change much in magnitude, because the finiteness of the
vortex prevents it from getting too close to the body.
This is in contrast to what was observed in the point-
vortex model, where the pressure on the surface could in-
crease orders of magnitude when the vortex approached
the body closely. On the other hand, during capture the
vortex revolves around the whole body and the force can
be maximal in any direction. It appears that the force
reaches relative maxima 3 times each revolution, with the
direction of application changing quite suddenly. This
strong ‘‘buffeting” of the body is entirely due to the effect
of the vortex. Such behavior may therefore have
significant implications for the design of bodies which
may be subject to interaction with turbulent or coherent
vortical structures in open flows.

FIG. 10. Trajectories in the longitudinal,
F,, and transversal, F,, force plane for the evo-
lution of the force due to the vortices acting on
the body. Unperturbed evolutions (above), and
capture events (below) are shown.
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V. CONCLUSIONS

The principal aim of the research described above was
to investigate the possibility of the existence of chaotic
trapping phenomena, as observed in point-vortex models,
in systems with extended vorticity distributions. This
was accomplished by developing a numerical scheme for
the evolution of the extended vorticity distribution utiliz-
ing the Navier-Stokes equations. The simulations which
were developed utilized a mixed spectral-finite-difference
numerical algorithm. Free-slip boundary conditions were
employed at the body surface in order to compare the re-
sults with previous Hamiltonian calculations.

The principal result of the work is that the chaotic cap-
ture phenomenon originally reported for the Hamiltonian
point-vortex models exists also in the extended system,
providing stronger evidence that the capture
phenomenon may exist in real physical flows. Perhaps
the most surprising of the above results is that much of
the phase-space structure of the Hamiltonian formulation
persists in extended systems, even for vortex distribution
sizes which are relatively large when compared with the
system length scales. For somewhat compact vorticity
distributions, the dynamical behavior of the extended
vortex along the original Hamiltonian separatrices and
fixed points is very similar to the point-vortex dynamics,
and even parameter ranges for high probability of cap-
ture are quite similar. Although it is difficult to interpret
the structure of separatrices and fixed points in the ex-
tended system, it is clear that the point-vortex models
capture much of the qualitative behavior of the extended
system, and can be used to guide analysis of more compli-
cated systems.

For larger vorticity distributions (roughly > 0.5 of the
body radius), the effect of the internal degrees of freedom
of the extended distribution provides the primary
difference in the dynamics. Here, the extra degrees of
freedom seem sufficient to induce chaotic behavior even
without the need for an explicit perturbation of the sys-
tem. The implications of this result are that such capture
events may be more general and ubiquitous than the orig-
inal Hamiltonian problem indicates. Additionally, for
large distributions new classes of dynamical interactions
can occur, specifically the tearing apart of the vortex as it
interacts with the body. Here, part of the vorticity distri-
bution can be torn away from the vortex and lost down-
stream, while the remaining part remains captured for a
longer time. The results of these simulations thus indi-
cate that the dynamics of the extended system may be
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significantly richer than the original Hamiltonian system,
and warranting further investigations.

In analogy with the pressure calculations for the
point-vortex system, the global dynamical force acting on
the body has been calculated by the impulse theorem. It
has been observed that during capture events, the force
can change sign very rapidly a number of times. In fact it
could be seen that the force vector rotates around the
body reaching its maximum about 3 times every vortex
revolution at unpredictable directions. The results de-
scribed above also indicate that there is a significant
amount of work necessary to more fully understand the
dynamical behavior of the extended system for this class
of physical systems. For example, the primary effect of
the viscosity in the extended formulation seems to be the
shortening of the vortex-body interaction time, while it
does not seem to affect the relative probability of ex-
periencing a capture event. Also, a more realistic refor-
mulation of the problem will be to eventually include no-
slip boundary conditions around the body, and to investi-
gate the effect this has on the dynamical behavior. In this
case the vorticity shed from the wall can be expected to
interact with the primary vortex leading to the possibility
of an induced vortex pairing. It should also be deter-
mined whether, for some choice of the parameters, the
trajectories of the pair and the subsequent evolution of
the vorticity (primary, secondary, or tertiary) remaining
close to the body can exhibit unexpected behavior.

A full classification of all of these possibilities may
eventually lead to a more accurate modeling of important
applications such as the aerodynamic properties of bodies
in the presence of atmospheric vorticity. For example,
for steadily moving bodies with circulation, the stagna-
tion points on the body influence the structure of the
boundary layer separation and hence the drag and lift
characteristics. It is clear that the dynamics resulting
from a vortex capture could significantly change these
characteristics leading, for example, to a stalling
phenomenon.
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